martes, 4 de agosto de 2015

TRANSISTOR BIPOLAR DE COMPUERTA AISLADA

TRANSISTOR BIPOLAR DE COMPUERTA AISLADA (IGBT)
Componente electrónico diseñado para controlar principalmente altas potencias, en su diseño está compuesto por un transistor bipolar de unión BJT y transistor de efecto de campo de metal oxido semiconductor MOSFET.
Durante mucho se tiempo se busco la forma de obtener un dispositivo que tuviera una alta impedancia de entrada y que fuera capaz de manejar altas potencias a altas velocidades, esto dio lugar a la creación de los Transistores bipolar de puerta aislada (IGBT). Los transistores IGBT han permitido desarrollos que no habían sido viables hasta entonces y se describirán más adelante. El mismo se puede identificar en un circuito con la simbología mostrada en la figura I.



Estructura

El IGBT es un dispositivo semiconductor de cuatro capas que se alternan (PNPN) que son controlados por un metal-óxido-semiconductor (MOS), estructura de la puerta sin una acción regenerativa. Un transistor bipolar de puerta aislada (IGBT) celular se construye de manera similar a un MOSFET de canal n vertical de poder de la construcción, excepto la n se sustituye con un drenaje + p + capa de colector, formando una línea vertical del transistor de unión bipolar de PNP. Este dispositivo posee la características de las señales de puerta de los transistores de efecto campo con la capacidad de alta corriente y bajo voltaje de saturación del transistor bipolar, combinando una puerta aislada FET para la entrada de control y un transistor bipolar como interruptor en un solo dispositivo. El circuito de excitación del IGBT es como el del MOSFET, mientras que las características de conducción son como las del BJT. En la figura II se observa la estructura interna de un IGBT, el mismo cuenta con tres pines Puerta (G), Emisor (E) y Colector (C).



Características
Sección de un IGBT.
El IGBT es adecuado para velocidades de conmutación de hasta 100 kHz y ha sustituido al BJT en muchas aplicaciones. Es usado en aplicaciones de altas y medias energía como fuente conmutada, control de la tracción en motores y cocina de inducción. Grandes módulos de IGBT consisten en muchos dispositivos colocados en paralelo que pueden manejar altas corrientes del orden de cientos de amperios con voltajes de bloqueo de 6.000 voltios.

Se puede concebir el IGBT como un transistor Darlington híbrido. Tiene la capacidad de manejo de corriente de un bipolar pero no requiere de la corriente de base para mantenerse en conducción. Sin embargo las corrientes transitorias de conmutación de la base pueden ser igualmente altas. En aplicaciones de electrónica de potencia es intermedio entre los tiristores y los mosfet. Maneja más potencia que los segundos siendo más lento que ellos y lo inverso respecto a los primeros.

Circuito equivalentede un IGBT.
Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15 V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.

Funcionamiento
Cuando se le es aplicado un voltaje VGE a la puerta , el IGBT enciende inmediatamente, la corriente de colector IC es conducida y el voltaje VCE se va desde el valor de bloqueo hasta cero. La corriente IC persiste para el tiempo de encendido en que la señal en la puerta es aplicada. Para encender el IGBT, el terminal C debe ser polarizado positivamente con respecto a la terminal E. La señal de encendido es un voltaje positivo VG que es aplicado a la puerta G.

Este voltaje, si es aplicado como un pulso de magnitud aproximada de 15 volts, puede causar que el tiempo de encendido sea menor a 1 s, después de lo cual la corriente de colector ID es igual a la corriente de carga IL (asumida como constante). Una vez encendido, el dispositivo se mantiene así por una señal de voltaje en el G. Sin embargo, en virtud del control de voltaje la disipación de potencia en la puerta es muy baja.

El IGBT se apaga simplemente removiendo la señal de voltaje VG de la terminal G. La transición del estado de conducción al estado de bloqueo puede tomar apenas 2 microsegundos, por lo que la frecuencia de conmutación puede estar en el rango de los 50 kHz.

EL IGBT requiere un valor límite VGE (TH) para el estado de cambio de encendido a apagado y viceversa. Este es usualmente de 4 V. Arriba de este valor el voltaje VCE cae a un valor bajo cercano a los 2 V. Como el voltaje de estado de encendido se mantiene bajo, el G debe tener un voltaje arriba de 15 V, y la corriente IC se autolimita.

No hay comentarios:

Publicar un comentario